Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2024: 4119960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559901

RESUMO

Background: Lactobacillus acidophilus is lactic acid bacteria that produce bacteriocins. Bacteriocins are antimicrobial peptides or proteins that exhibit activity against closely related bacteria. The aim of this study was to determine the effect of L. acidophilus ATCC 4356 bacteriocin against Staphylococcus aureus. Material and Methods. We used four different phenotypic methods for antimicrobial activities against two standard strains: methicillin-resistant S. aureus (MRSA) ATCC 33591 and methicillin-susceptible S. aureus (MSSA) ATCC 25923. The methods were (1) agar well diffusion, (2) overlay soft agar, (3) paper disk, and (4) modification of punch hole. The ammonium sulfate method was used to concentrate crude bacteriocin, and ultrafiltration and dialysis tubes were used to remove ammonium sulfate from the bacteriocins. Each method was repeated in triplicate. Result: L. acidophilus ATCC 4356 showed antimicrobial activity against both MRSA and MSSA standard strains only by the overlay soft agar method and not by the agar well diffusion, punch hole modification, and paper disk methods. No antimicrobial effects were observed in crude bacteriocins concentrated. Conclusion: The growth inhibition of S. aureus in overlay soft agar method may be due to the production of bacteriocin-like substances. The overlay soft agar method is a qualitative test, so there is a need for further study to optimize the conditions for the production of bacteriocin-like substances in the culture supernatant and precise comparison between the inhibitory activity and pheromone secretion of different strains.


Assuntos
Anti-Infecciosos , Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriocinas/metabolismo , Lactobacillus acidophilus , Ágar/metabolismo , Sulfato de Amônio/metabolismo , Sulfato de Amônio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
Adv Biomed Res ; 12: 94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288011

RESUMO

Background: Bacterial virulence factors may be influenced by sub-minimum inhibitory concentrations (sub-MICs) of antibiotics. The main purpose of this study was to investigate the effects of gentamicin at sub-MICs (0.5 MIC and 0.25 MIC) on alginate production of clinical isolates of Pseudomonas aeruginosa. Materials and Methods: The minimum inhibitory concentrations of gentamicin against 88 clinical isolates of P. aeruginosa were determined using the broth microdilution method. Alginate production of the isolates in the absence and presence of gentamicin at sub-MICs was assessed by the carbazole method. The presence of alginate in clinical isolates was confirmed by the detection of alginate genes (algD and algU) using the PCR method. Results: All the isolates had the ability of alginate production and were positive for algD and algU genes. sub-MICs of gentamicin significantly increased alginate production of 34 isolates (38.6%). On the other hand, in 49 isolates (55.7%), alginate production was significantly increased after treatment with sub-MICs of gentamicin. In five isolates (5.7%), the alginate production was reduced in exposure to 0.5 MIC of gentamicin while it was increased by gentamicin at 0.25 MIC. Conclusion: This study showed different effects of gentamicin at sub-MICs on the alginate production of clinical isolates of P. aeruginosa. Further research is highly recommended to understand the mechanism of different responses of P. aeruginosa isolates to the exposure of sub-MICs of gentamicin.

3.
Adv Biomed Res ; 12: 50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057221

RESUMO

Background: Biofilm production is an important virulence factor in Staphylococcus aureus. Most of the infections associated with biofilms of this bacterium are very difficult to treat using antibiotics. The present research studied the effects of the two probiotic Lactobacillus species L. casei and L. rhamnosus on S. aureus biofilm. Materials and Methods: Cell-free supernatant (CFS) extracts of L. casei ATCC 39392 and L. rhamnosus ATCC 7469 culture were prepared. The effects of sub-minimum inhibitory concentrations of the CFS extracts on cell surface hydrophobicity (CSH), initial attachment, biofilm formation, and their ability in eradicating S. aureus ATCC 33591 biofilms were assessed. In addition, the effects of CFS extracts on expression of the genes involved in formation of S. aureus biofilms (cidA, hld, sarA, icaA, and icaR) were also evaluated through real-time polymerase chain reaction. Results: CFSs of both Lactobacillus spp. significantly reduced CSH, initial attachment, and biofilm formation and eradicated the biofilms. The above findings were supported by scanning electron microscopy results. These two Lactobacillus CFSs significantly changed the expression of all studied biofilm-related genes. Expression levels of cidA, hld, and icaR genes significantly increased by 4.4, 2.3, and 4.76 fold, respectively, but sarA and icaA genes were significantly downregulated by 3.12 and 2.3 fold. Conclusion: The results indicated that CFS extracts of L. casei and L. rhamnosus had desirable antagonistic and anti-biofilm effects against S. aureus. Consequently, carrying out further research enables us to prepare pharmaceuticals from these CFSs in order to prevent and treat infections caused by S. aureus biofilms.

4.
Iran J Public Health ; 50(2): 341-349, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33747998

RESUMO

BACKGROUND: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. METHODS: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. RESULTS: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were Multidrug-Resistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 µg/ml in 39 isolates, 250-400 µg/ml in 51 isolates and less than 250 µg/ml in 10 isolates. CONCLUSION: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.

5.
Iran J Microbiol ; 13(6): 808-816, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35222859

RESUMO

BACKGROUND AND OBJECTIVES: Antibiotics at sub-minimum inhibitory concentrations (sub-MIC) may alter bacterial virulence factors. The objective of this study was to investigate the effect of gentamicin at sub-MIC concentrations on the expression of genes involved in alginate production and biofilm formation of Pseudomonas aeruginosa. MATERIALS AND METHODS: The broth microdilution method was used to determine the MIC of gentamicin for three P. aeruginosa clinical isolates (P1-P3) and standard strains (PAO1 and 8821M). Alginate production and biofilm formation of the bacteria in the presence and absence of sub-MIC concentrations of gentamicin were measured using microtiter plate and carbazole assay, respectively. The real-time PCR method was used to determine the effect of gentamicin at sub-MIC concentrations on the expression level of genes involved in biofilm formation (pelA and pslA) and alginate production (algD and algU). RESULTS: Gentamicin at sub-MIC concentrations significantly reduced alginate production, biofilm formation, and the expression of alginate and biofilm-encoding genes in clinical isolate P1. This inhibitory effect was also observed on the alginate production of 8821M strain and biofilm formation of PAO1strain. In clinical isolates, P2 and P3, alginate production, biofilm formation, and the expression of alginate and biofilm-encoding genes were significantly increased in exposure to sub-MIC concentrations of gentamicin. CONCLUSION: This study showed that different phenotypic changes in clinical isolates and standard strains of P. aeruginosa in exposure to sub-MIC concentrations of gentamicin are associated with changes in the expression of virulence genes. Further researches are required to understand the mechanisms involved in regulating the expression of virulence genes after exposure to sub-MIC concentrations of antibiotics.

6.
Iran J Microbiol ; 11(3): 246-254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31523409

RESUMO

BACKGROUND AND OBJECTIVES: Staphylococcus aureus, as an opportunistic pathogen, is the cause of a variety of diseases from mild skin infections to severe invasive infections and food poisoning. Increasing antibiotic resistance in S. aureus isolates has become a major threat to public health. The use of compounds produced by probiotics can be a solution to this problem. Thus, the purpose of this study was to investigate the effect of Saccharomyces cerevisiae on some virulence factors (biofilm, α-hemolysin, and enterotoxin A) of S. aureus. MATERIALS AND METHODS: Supernatant and lysate extracts were prepared from S. cerevisiae S3 culture. Sub-MIC concentrations of both extracts were separately applied to S. aureus ATCC 29213 (methicillin-sensitive S. aureus; MSSA) and S. aureus ATCC 33591 (methicillin-resistant S. aureus; MRSA) strains. Biofilm formation of these strains was measured by microtiter plate assay and expression level of α-hemolysin and enterotoxin A genes (hla and sea, respectively) using real-time PCR technique. RESULTS: The supernatant extract has reduced both biofilm formation and expression of sea and hla genes, while lysate extract had only anti-biofilm effects. The MRSA strain showed more susceptibility to yeast extracts than MSSA strain in all tests. CONCLUSION: The present study exhibited favorable antagonistic effects of S. cerevisiae S3, as a probiotic yeast, on MSSA and MRSA strains. Based on the findings of this study, the compounds produced by this yeast can be used to control S. aureus infections; however, further similar studies should be conducted to confirm the findings of the present study.

7.
Biomed Pharmacother ; 89: 719-731, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273634

RESUMO

Extensive studies have been performed to clarify the processes during which mesenchymal stem cells (MSCs) differentiate into their lineage fates. In vitro differentiation of MSCs into distinct lineages have attracted the focus of a large number of clinical investigations. Although the gene expression profiling during differentiation of MSC toward bone, cartilage, and adipocytes is well established, the master regulators by which MSC fate can be controlled are not entirely determined. During differentiation of MSCs into a special cell fate, epigenetic mechanisms considered as the primary mediators that suppress the irrelevant genes and activate the genes required for a specific cell lineage. This review dedicated to addressing the changes of various epigenetic mechanisms, including DNA methylation, histone modifications, and micro-RNAs during chondrogenic and adipogenic differentiation of MSC.


Assuntos
Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Epigênese Genética/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia
8.
Biomed Pharmacother ; 84: 592-600, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694003

RESUMO

Ovarian cancer (OC) is the most lethal of malignant gynecological cancers, and has a very poor prognosis, frequently, attributable to late diagnosis and responsiveness to chemotherapy. In spite of the technological and medical approaches over the past four decades, involving the progression of several biological markers (mRNA and proteins biomarkers), the mortality rate of OC remains a challenge due to its late diagnosis, which is expressly ascribed to low specificities and sensitivities. Consequently, there is a crucial need for novel diagnostic and prognostic markers that can advance and initiate more individualized treatment, finally increasing survival of the patients. MiRNAs are non-coding RNAs that control target genes post transcriptionally. They are included in tumorigenesis, apoptosis, proliferation, invasion, metastasis, and chemoresistance. Several studies have within the last decade demonstrated that miRNAs are dysregulated in OC and have possibilities as diagnostic and prognostic biomarkers for OC. Additionally; recent studies have also focused on miRNAs as predictors of chemotherapy sensitivities and their potential as therapeutic targets. In this review, we discuss the current data involving the accumulating evidence of the altered expression of miRNAs in OC, their role in diagnosis, prognosis, and forecast of response to therapy. Given the heterogeneity of this disease, it is likely that advances in long-term survival might be also attained by translating the recent insights of miRNAs participation in OC into new targeted therapies that will have a crucial effect on the management of ovarian cancer.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , MicroRNAs/genética , Técnicas de Diagnóstico Molecular , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Animais , Biomarcadores Tumorais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Valor Preditivo dos Testes , Prognóstico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...